Addition:
quick by heart or work out or £1

- Add to the next $100, £ 1$ and whole number (e.g. $234+66=$ $300,3.4+0.6=4$)
- Add near multiples of 10, 100, 1000, £1 and 10p
Use the best mental calculation to add 1-, 2-, 3- and 4-digit numbers when possible
Add 3 and 4 digit numbers using efficient column method

I can compare and ord decimals with the same number of decimal places up
t 2 decima places
I can recognise and write the decimal equivalent of $1 / 4,1 / 2$ 3/4
Include contexts such as measures e. $1 / 2 \mathrm{Kg}=0.5 \mathrm{Kg}$ I can round a one decimal place number to a whole number

- I can write the decimal equivalent of tenths and hundredths and recognise decimals in the context of money
- I can recognise a hundredth as a whole divided into 100 equal parts and as 10 parts of a tenth
- I can count in tenths and decimal tenths recognising them as numbers between whole numbers
- 4S.7-I can use expanded witten subtraction using decompostion with 3 digit numbers
- 4S.6-I can use expanded written subtraction without decomposing (2 and 3 digit numbers)
- $4 \mathrm{~S} .5-\mathrm{I}$ can find change from $£ 10, £ 20$ and $£ 50$ by counting (FROG)
- 4S.4-I can subract by counting on (FROG) without a number line e.g. 503-368
- 4S.3 - I can takeaway multiples and near multiples of 10,100 , 1000, £1 and 10p
- 4S. 2 - I can takeaway 2 digit numbers from 2 and 3 - digit numbers without a number line
- 4S.1-I know by heart or can work out quickly number bonds to 100 or $£ 1$
erties of number
- count in multiples of 6, 7, 9, 25 and 1000
- find 1000 more or less than a given number
- count backwards through zero to include negative numbers
- recognise the place value ach digit in a four-dig , hundreds, tens, and ones)
- order and compare numbers beyond 1000
- identify, represent and estimate numbers using
- round any number to the
- nearest 10,100 or 1000
- read Roman numerals to 100 to C) and know that over time, the numeral system changed to include the concept of zero and place value
- 4M. 10 - I can use a grid method to multiply a teen number by a 2 -digit number
- 4M.9-I can use the 'ladder method to multiply 3 -digit numbers by 1 -digit numbers
- 4M. 8 - I can use a grid method oo multiply a 3-digit number by a 1 -digit numebr
- 4M. 7 - I can partition 2 digit numbers to multiply by a 1 -digit number (e.g. 4×24 as 4×20 and 4×4.
- 4M.6-I can use partitioning to find doubles to 100 and beyond
- 4 M .5 - I can multiply a 2 -digit by 9 or 11 by multiplying by 10 and adjusting (e.g. 9×25 as (10x25)-25)
- 4M.4-I can use number facts to make mental multiplication easier e.g. 36×5 is half of 36×10
- 4M. 3 - I can use related facts to multiply by multiples of 10 , 100, 1000 (e.g. 300×6 and 50×60)
- 4M. 2 - I can multiply whole numbers and 1 place decimals by $10,100,1000$
- 4M. 1 - I know by heart all the multiplication facts up to 12 x

Measures

- I can estimate, compare and calculate measures in a variet f contexts
- I can convert between units of measure (e.g. Km to m)
- Begin to work with decimal notation
- I can use both $£$ and p in context and recognise equivalence e.g. $306 \mathrm{p}=£ 3.06$

and Perimeter:

- I can calculate the area of
rectangles using multiplication
- I can find the area of rectangles by counting squares
squares
- 4D.6-I can use a written method to divide a 2 digit or a 3 - digit number by a 1 -digit number.
- $84 \div 3=28 \mathrm{r} 4$
- 4D.5-I can divide large numbers mentally by subtracting the 10 th or 20th multiple as appropiate.
- $156 \div 6$ is 20×6 and 6×6 so there 26×6 in 156
4D. 4 - I can find halves of even numbers to 200 and beyond using partitioning
4D. 3 - I can use related facts to divide multiples of 100 by 1 digit numbers e.g.
- 4D. 2 - I can divide whole numbers by 10,100 , to give numbers by 10,100 , to give decimal place
- 4D. 1 - I know by heart all the division facts upto $144 \div 12$

Statistics

- I can solve comparison, sum and difference problems using information presented in bar charts, pictograms, ther graphs
- I can present continuous data in the form of time (line) graphs recognising that it
- I can present discrete data using bar charts using a greater range of scales
- recognise that hundreths arise when dividing an object by one hundred and dividing tenths by 10
- I can recognise and work out non-unit fractions of shapes, lengths and sets of objects e.g $3 / 4$ of a metre, or $2 / 5$ of a bar
of chocolate made of 20 pieces
I can recognise and show equivalons ($0,1 / 3$ a family of fra
$3 / 9$)
3/9)
Fractions with denominators that are multiples of the same number can be referred to be as being in the same family the bottom, you do to the top
I can add and subtract
fractions where the
denominator is the same beyond a whole
- I can convert hours to minutes, minutes to seconds, years months or weeks to days
I can solve problems involving calculating lengths of time
time between analogue and digital 12 and 24 hour clocks

Position and Rotation:

I can translate shapes on a grid and describe the movement using left/right, up/down

- I can complete polygons by giving a missing co-ordinate on a grid (e.g square/ rectangle)
- I can use co-ordinates to plot a shape on a grid (1st quadrant)

Problem Solving

- I can solve simple measure and money problems involving fractions and decimals to two decimal places
- I can solve 2 step word problems involving addition and subtraction deciding which operations to use and when
- I can estimate answers and use inverse operations to check answers to a calculation in the context of a problem
- I can solve missing number problems with increasingly large numbers using my knowledge of place value and relationships between operations
- I can identify and compare acute, obtuse and reflex angles
- I can identify lines of symmetry 2D shapes present
ifferent orientation
- I can complete symmetrical respect to a specific line of symmetry ymmetry
- I can name, describe and sort a variety of quadrilaterals and triangles based on their properties
- Quadrilaterals include parallelogram, rhombus trapezium; Triangles include isosceles, eqilateral, scalene

